Free Vibration Analysis of A357 Alloy Reinforced with Dual Particle Size Silicon Carbide Metal Matrix Composite Plates Using Finite Element Method

نویسندگان

چکیده

In this work, the free vibration behaviour of A357 composite plate reinforced with dual particle size (DPS) (3 wt. coarse + 3 fine, 4 2 and fine) SiC is evaluated using finite element method. To end, first-order shear deformation theory (FSDT) has been used. The equations motion have derived Hamilton's principle solution obtained through condensation technique. A thorough parametric study was conducted to understand effect reinforcement weight fraction, boundary conditions, aspect ratio length-to-width geometry on natural frequencies A357/DPS-SiC plates. Results reveal significant influence all above variables frequency cases, fine particles displayed highest owing its higher elastic rigidity modulus. Further, increase decrease in geometry. Natural also decreases number edges. Lastly, increasing drastically improves © 2021 Polish Academy Sciences. All rights reserved.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

buckling of viscoelastic composite plates using the finite strip method

در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....

Free vibration analysisof soft-core composite-faced sandwich plates using three-dimensional finite element method

In this paper, natural frequencies of the sandwich plates with soft flexible core and composite face sheets are obtained. Three-Dimensional (3D) finite element method (FEM) is used for constructing and analyzing of the sandwich plates to obtain their natural frequencies. Continuity conditions for transverse shear stresses at the interfaces as well as transverse flexibility and transverse normal...

متن کامل

Free and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method

In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...

متن کامل

Free Vibration Analysis of Moderately Thick Functionally Graded Plates with Multiple Circular and Square Cutouts Using Finite Element Method

A simple formulation for studying the free vibration of shear-deformable functionally graded plates of different shapes with different cutouts using the finite element method is presented. The aim is to fill the void in the available literature with respect to the free vibration results of functionally graded plates of different shapes with different cutouts. The material properties of the plat...

متن کامل

free vibration analysisof soft-core composite-faced sandwich plates using three-dimensional finite element method

in this paper, natural frequencies of the sandwich plates with soft flexible core and composite face sheets are obtained. three-dimensional (3d) finite element method (fem) is used for constructing and analyzing of the sandwich plates to obtain their natural frequencies. continuity conditions for transverse shear stresses at the interfaces as well as transverse flexibility and transverse normal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archives of Foundry Engineering

سال: 2023

ISSN: ['1897-3310', '2299-2944']

DOI: https://doi.org/10.24425/afe.2021.136085